

Möglichkeiten zur Speicherung von elektrischer Energie und Speicherbedarfe – In aller Kürze

Richard Hanke-Rauschenbach, Astrid Bensmann & Boris Bensmann

Institut für Elektrische Energiesysteme (IfES) Fachgebiet Elektrische Energiespeichersysteme

Leibniz Forschungszentrum Energie 2050 (LiFE 2050)

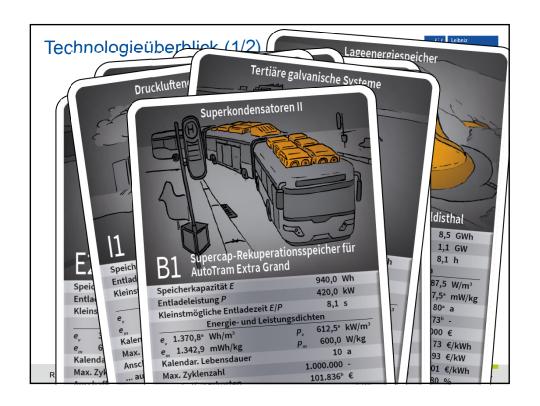
Sitzung der BAG-Energie, Bündnis 90/Die Grünen, 28.10.2017, Berlin

Bitte beachten Sie:

Dies ist nur ein kurzer Vortrag!

Einige Aspekte sind deshalb vereinfacht dargestellt. Tatsächlich sind die zugrunde liegenden Zusammenhänge etwas komplexer und bedürfen teilweise einer differenzierteren Betrachtung.

Bitte sprechen Sie mich im Bedarfsfall gern an, wenn Sie einzelne Aspekte belastbar formuliert benötigen.


R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Gliederung

- 1. Welche Stromspeichertechnologien gibt es und auf welche Kenngrößen kommt es an?
- 2. Welche Speichertechnologien und welche Speicherkapazitäten brauchen wir für die Energiewende?
- Ausblick: Sektorenkopplung –
 Speicherbedarfe reduzieren und Gesamtsystem dekarbonisieren

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Technologieüberblick	(2/2)		f f Leibniz t G Z Universitat t G G Hannover
 Klassifikation von Speichern erfolgt 	nach Energieform,		er die Speicherung spiele
Elektrische Feldenergie (Lagin einem elektrischen Feld)	geenergie	Sup	perkondensatoren
Magnetische Feldenergie		Sup	raleitende Spulen
Innere chemische Energie		Akk	umulatoren
Innere thermische Energie		Dru	ckluftenergiespeicher
Kinetische Energie		Sch	wungradspeicher
Potentielle Energie (Lageen im Schwerefeld der Erde)	ergie	Pun	npspeicherkraftwerke
 Weitere mögliche Speicherk entsprechend typischer Speicherdauer 	lassifikationen Kurzzeitspeicher	\leftrightarrow	Langzeitspeicher
entsprechend typischer Entlade-/Ladezeit	Leistungssysteme	\leftrightarrow	Energiesysteme
entsprechend Anordnung im Versorgungsnetz	zentrale Speicher	\leftrightarrow	dezentrale Speicher
•	•••		
R. Hanke-Rauschenbach et al. Institut für Elektrische	Energiesysteme (IfES) 28.10.2017	, Berlin	Seite 5

Wichtige Kenngrößen für stationäre Stromspeicher zur Deckung ...

- ... des Ausgleichsbedarfs im Kontext der Nutzung erneuerbare Energien*
- Speicherkapazität E (in kWh), Lade-/Entladeleistung P (in kW)
- Spezifische Kapazität des Speichers ε (in kWh/kW)

 $\varepsilon = \frac{E}{P} \xrightarrow{\text{Speicherkapazität}} \text{max. Lade-/Entladeleistung}$

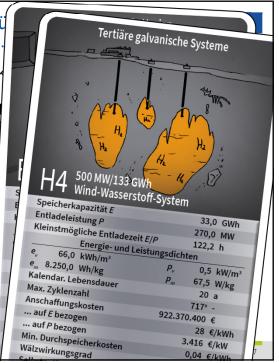
*Für andere Anwendungen gibt es andere wichtige Kenngrößen!

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Wichtige Kenngrößen fü speicher zur Deckung ...

- ... des Ausgleichsbedarfs im h Energien*
- Speicherkapazität E (in kW
- Spezifische Kapazität des §

Beispiel: Tesla Powerwall

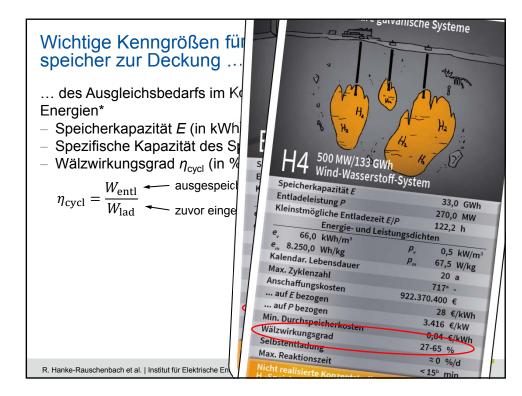

 ε = 6,4 kWh/2 kW = 3,1 kWh/kW

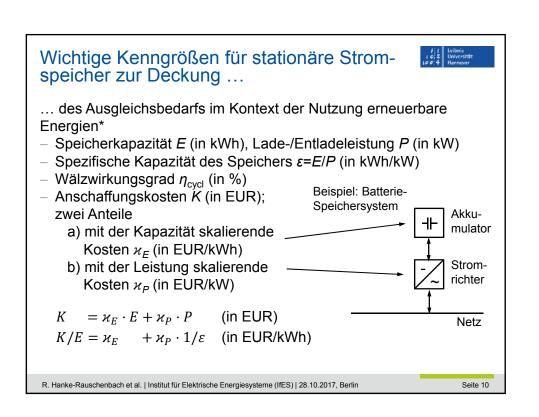
Beispiel: Wind-H₂-System ε = 33 GWh/270 MW

= 122 kWh/kW

*Für andere Anwendungen gibt es

R. Hanke-Rauschenbach et al. | Institut für Elektrische


Wichtige Kenngrößen für stationäre Stromspeicher zur Deckung ...



- ... des Ausgleichsbedarfs im Kontext der Nutzung erneuerbare Energien*
- Speicherkapazität E (in kWh), Lade-/Entladeleistung P (in kW)
- Spezifische Kapazität des Speichers ε (in kWh/kW)
- Wälzwirkungsgrad $\eta_{
 m cycl}$ (in %)

$$\eta_{\rm cycl} = \frac{W_{\rm entl}}{W_{\rm lad}} \begin{tabular}{ll} \hline & & {\rm ausgespeicherte\ Energie\ (in\ kWh)} \\ \hline & & {\rm zuvor\ eingespeicherte\ Energie\ (in\ kWh)} \\ \hline \end{tabular}$$

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Wichtige Kenngrößen für stationäre Stromspeicher zur Deckung ...

- Anschaffungskosten; zwei Anteile
 - a) mit der Kapazität skalierende b) mit der Leistung skalierende Kosten κ_F (in EUR/kWh)
 - Kosten χ_{P} (in EUR/kW)

$$K/E = \varkappa_E + \varkappa_P \cdot 1/\varepsilon$$
 (in EUR/kWh)

Beispiel: Li-Ionen-Akkumulator

 $(\varkappa_F \approx 800 \text{ EUR/kWh}, \varkappa_P \approx 150 \text{ EUR/kW})$

* System mir spezifischer Kapazität von ε=5 kWh/kW $K/E = 800 \text{ EUR/kWh} + 150 \text{ EUR/kW} \cdot 1/(5 \text{ kWh/kW})$

= 830 EUR/kWh

* System mir spezifischer Kapazität von ε=150 kWh/kW

 $K/E = 800 \text{ EUR/kWh} + 150 \text{ EUR/kW} \cdot 1/(150 \text{ kWh/kW})$ = 801 EUR/kWh

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

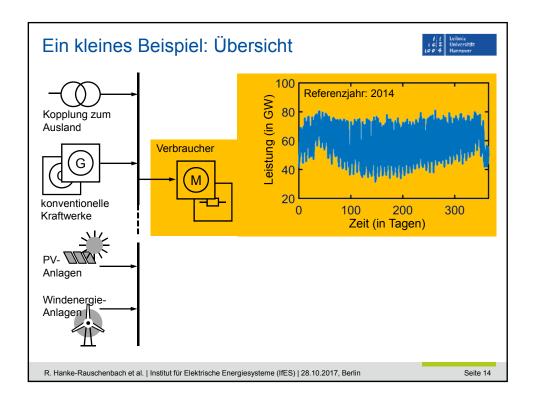
Wichtige Kenngrößen für stationäre Stromspeicher zur Deckung ...

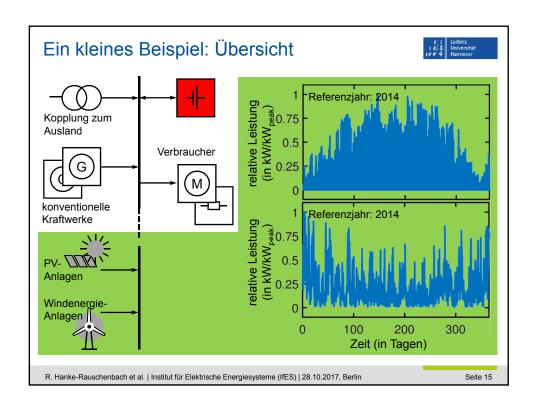
- Anschaffungskosten; zwei Anteile
- a) mit der Kapazität skalierende b) mit der Leistung skalierende Kosten \varkappa_{F} (in EUR/kWh)
 - Kosten \varkappa_P (in EUR/kW)

$$K/E = \varkappa_E + \varkappa_P \cdot 1/\varepsilon$$
 (in EUR/kWh)

Beispiel: Wasserstoff-System mit Kavernenspeicher $(\varkappa_F \approx 0.50 \text{ EUR/kWh}, \varkappa_P \approx 1500 \text{ EUR/kW})$

- * System mir spezifischer Kapazität von ε=5 kWh/kW $K/E = 0.50 \text{ EUR/kWh} + 1500 \text{ EUR/kW} \cdot 1/(5 \text{ kWh/kW})$ = 300,50 EUR/kWh
- * System mir spezifischer Kapazität von ε=150 kWh/kW $K/E = 0.50 \text{ EUR/kWh} + 1500 \text{ EUR/kW} \cdot 1/(150 \text{ kWh/kW})$ = 10,50 EUR/kWh

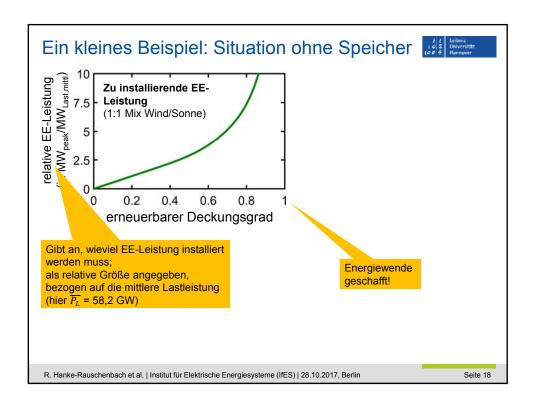

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

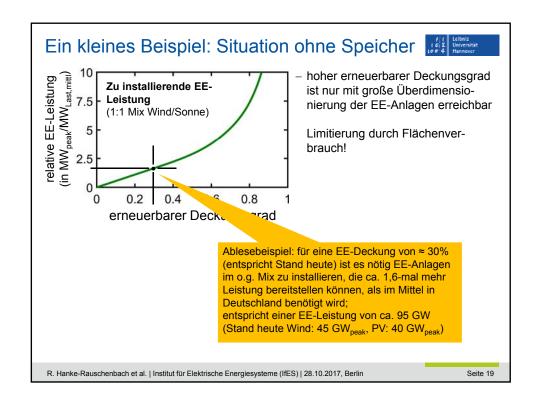

Gliederung

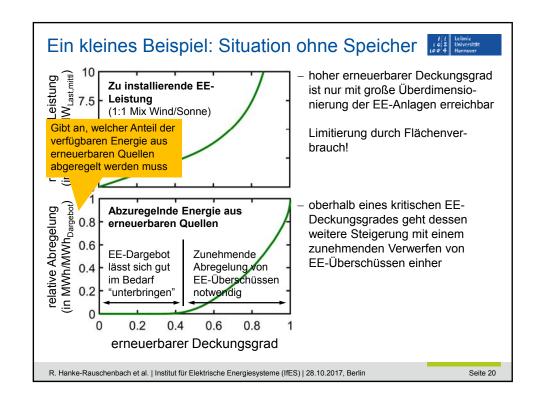
- 1. Welche Stromspeichertechnologien gibt es und auf welche Kenngrößen kommt es an?
- 2. Welche Speichertechnologien und welche Speicherkapazitäten brauchen wir für die Energiewende?
- Ausblick: Sektorenkopplung Speicherbedarfe reduzieren und Gesamtsystem dekarbonisieren

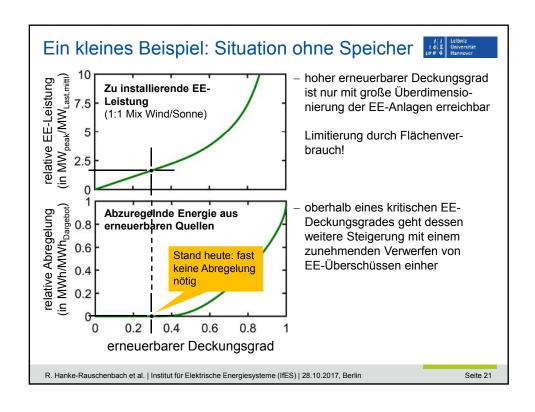
R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

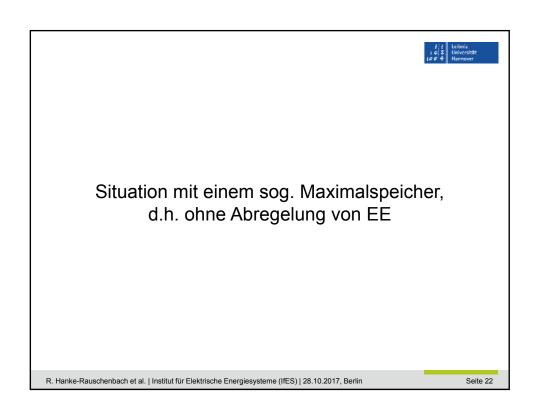
Achtung: dies ist ein "Spielzeug"-Beispiel mit folgende Einschränkungen/Annahmen

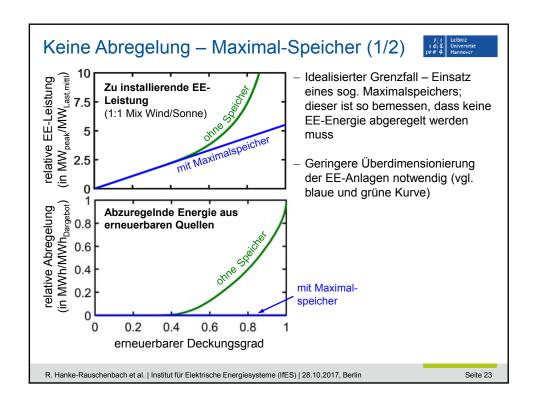

- Annahmen, welche die "Modellrealität" eher verschärfen
 - andere EE-Dargebote (Biomasse, Laufwasser, ...)
 werden vernachlässigt
 - (hoffentlich) sinkender Energiebedarf mit vorschreitender Zeit ist nicht berücksichtigt
- Annahmen, welche die "Modellrealität" eher verwässern
 - perfektes Stromnetz ist unterstellt ("Deutschland als Kupferplatte")
 - Ideales Verhalten aller Marktteilnehmer unterstellt
 - Speicherverluste vernachlässigt


- ...

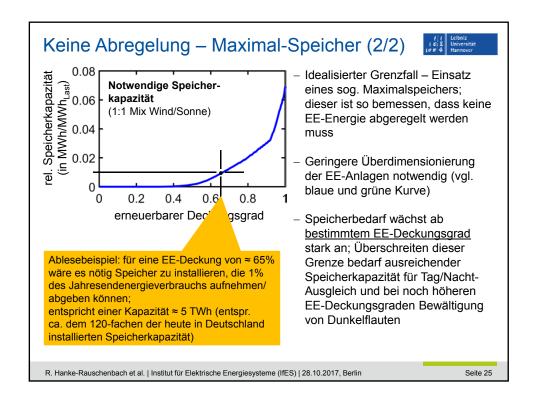

Aber ein sehr wertvolles "Spielzeug"-Beispiel, weil es viele relevante Effekte qualitativ richtig beschreibt

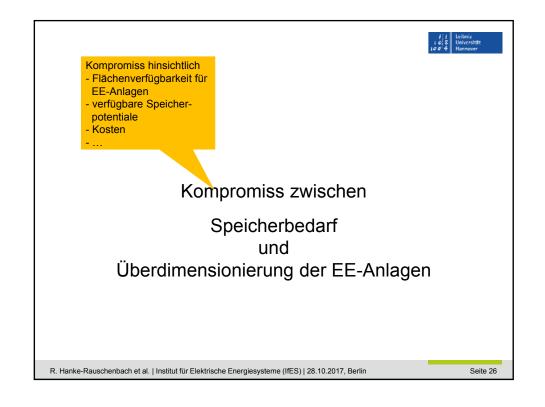

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

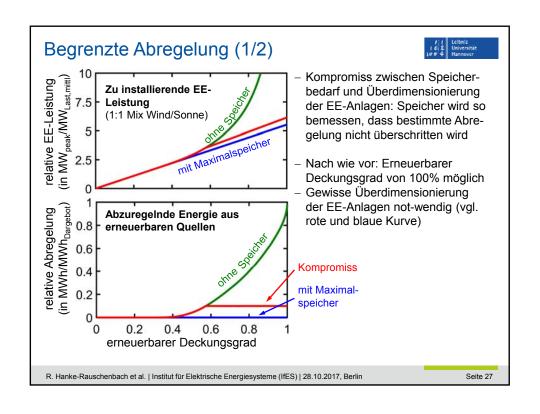


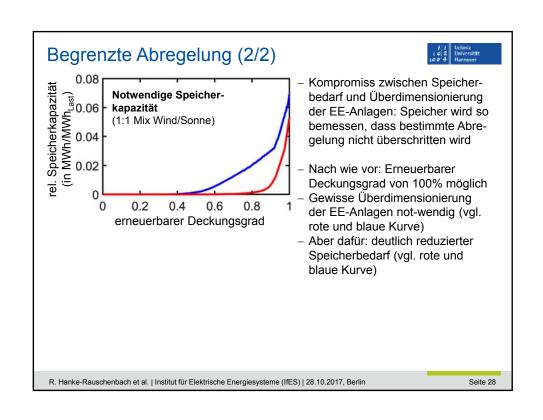


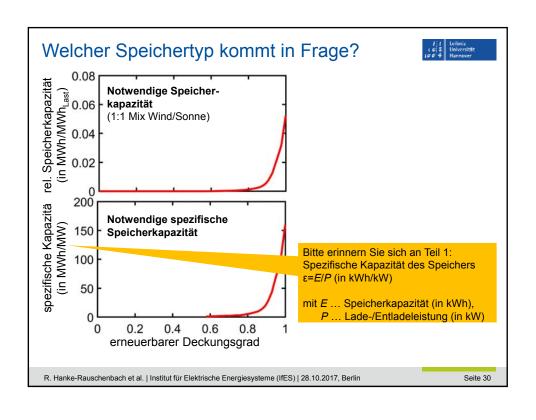


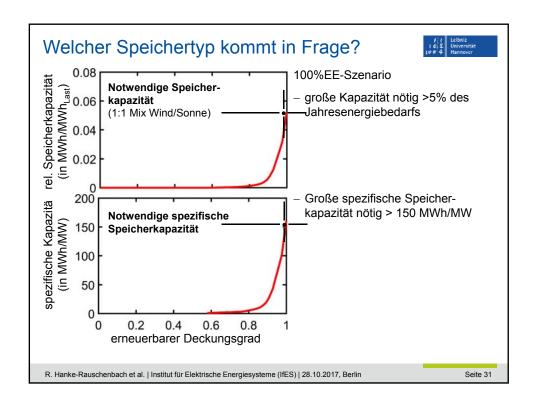


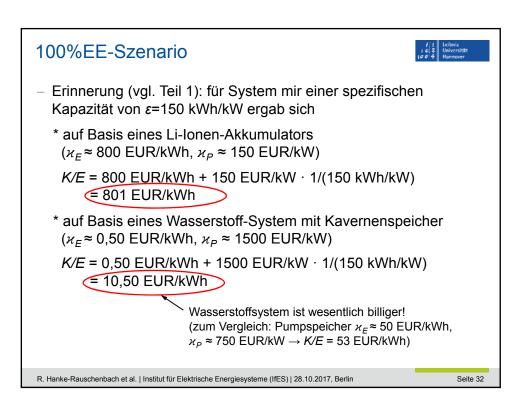


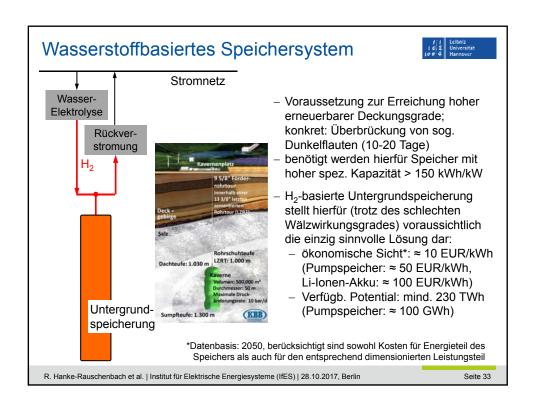


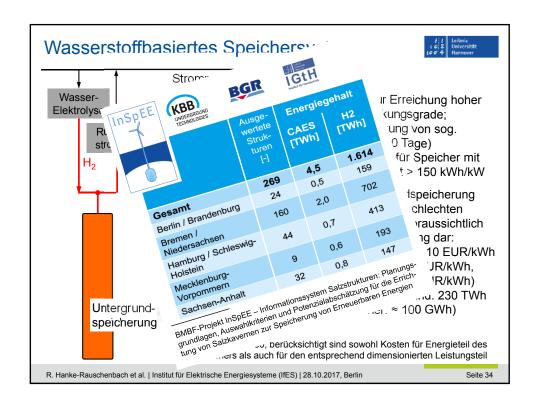


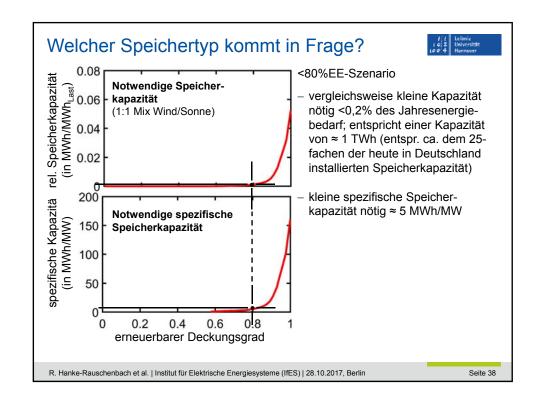












2015	2050
flexibel 23-28% 0-1%/m	40-50% 0-1%/m
40 Jahre 10.000	40 Jahre 10.000
0,3-0,6 €/kWh ^b 1.107-1.323 €/kW 3,5%/a	0,3-0,6 €/kWh ^b 515-635 €/kW 3,5%/a
mind. 100 GWh ^c 200 TWh ^d Platin 0,25-0,5 kg/M < 0,1 m ² /MWh ^e	IW
ntner, 2014), spez. Energie Druck Speichervermögen der dt. Erdga	asspeicher an, die dann in
	flexibel 23-28% 0-1%/m 40 Jahre 10.000 0,3-0,6 €/kWhb 1.107-1.323 €/kW 3,5%/a mind. 100 GWhc 200 TWhd Platin 0,25-0,5 kg/N < 0,1 m²/MWhe speichervermögen der dt. Erdge n in Norddeutschland geeignete

	2015	2050
Spezifische Leistung, $\varepsilon = E/P$	0,5-10 kWh/kW	0,2-10 kWh/kW
Lade-/Entladewirkungsgrad, $\eta_{\mathrm{lad}} \cdot \eta_{\mathrm{entl}}$	84-87%	85-95%
Ratenkonstante, Selbstentladung	3-11%/m	1-5%/m
kalendarische Lebensdauer	11-15 Jahre	14-30 Jahre
Zyklenlebensdauer (Vollzyklen)	5.000	12.000
Investitionskosten		
mit Kapazität skalierender Teil	310-580 €/kWh	66-145 €/kWh
	(580-2.100 €/kWh)b	(145-445 €/kWh)b
mit Leistung skalierender Teil	140-180 €/kW	30-60 €/kW
laufende Kosten bezogen auf Investkost.	0,5-1,5%/a	0,5-1,5%/a
Kapazitäts-/Leistungsuntergrenze	keine	
Potentialgrenze (BRD)	keine	
kritische Ressourcen	Lithium 80-200 kg/M	1Wh,
	Cobalt 400-500 kg/N	ЛWh
spez. Flächenbedarf	ca. 15 m ² /MWh ^c	
^a falls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa ⁰grobe Abschätzung; angenommene Gebäudehöhe 2,5 m	auer (2015) ^b gilt für kleinskalig	e Systeme (Heimanlagen)

	2015	2050
Spezifische Leistung, $\varepsilon=E/P$ Lade-/Entladewirkungsgrad, $\eta_{\mathrm{lad}}\cdot\eta_{\mathrm{entl}}$ Ratenkonstante, Selbstentladung	flexibel 73-84% 0,2-0,6%/m	73-84% 0,2-0,6%/m
kalendarische Lebensdauer Zyklenlebensdauer (Vollzyklen)	80 Jahre 100.000	80 Jahre 100.000
Investitionskosten mit Kapazität skalierender Teil mit Leistung skalierender Teil laufende Kosten bezogen auf Investkost.	25-75 €/kWh 680-1.065 €/kW 1,2%/a	25-75 €/kWh 680-1065 €/kW 1,2%/a
Kapazitäts-/Leistungsuntergrenze Potentialgrenze (BRD) kritische Ressourcen spez. Flächenbedarf	mind. 370 MWh ^b 100 GWh ^c keine ca. 90 m ² /MWh ^d	
rfalls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa rnach Fichtner (2014) Wert ist kritisch zu hinterfragen; stark divergierende Angaben in d dgrobe Abschätzung; unterstellte Fallhöhe 200 m, unterstellte Dam	er Literatur	

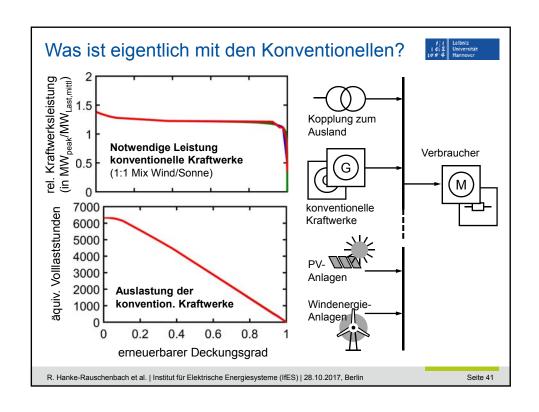
<100%EE-Szenarien

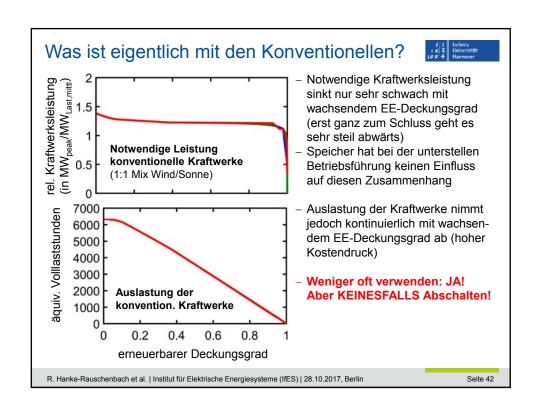
- Erinnerung (vgl. Teil 1): für System mir einer spezifischen Kapazität von ε=5 kWh/kW ergab sich
 - * auf Basis eines Li-Ionen-Akkumulators $(\varkappa_F \approx 800 \text{ EUR/kWh}, \varkappa_P \approx 150 \text{ EUR/kW})$

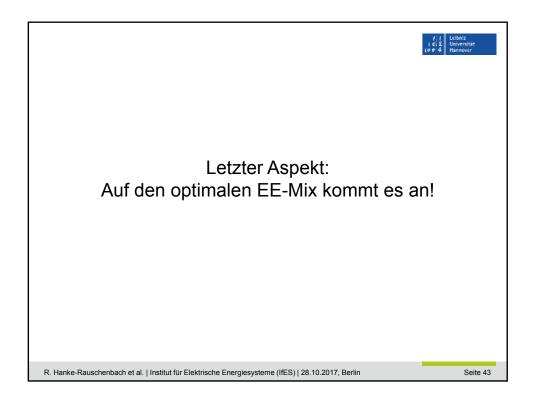
 $K/E = 800 \text{ EUR/kWh} + 150 \text{ EUR/kW} \cdot 1/(5 \text{ kWh/kW})$ = 830 EUR/kWh

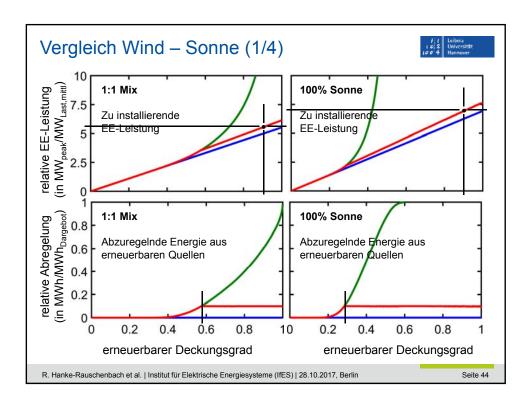
* auf Basis eines Wasserstoff-System mit Kavernenspeicher $(\varkappa_F \approx 0,50 \text{ EUR/kWh}, \varkappa_P \approx 1500 \text{ EUR/kW})$

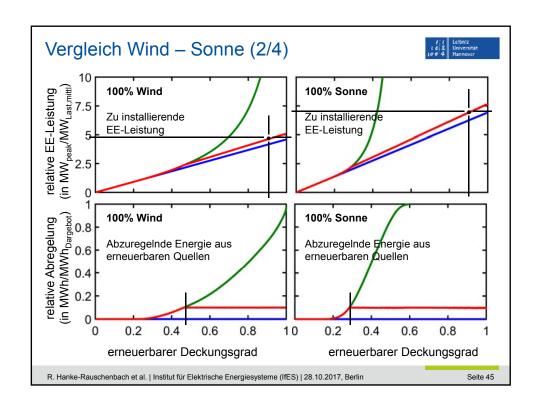
 $K/E = 0.50 \text{ EUR/kWh} + 1500 \text{ EUR/kW} \cdot 1/(5 \text{ kWh/kW})$ = 300,50 EUR/kWh

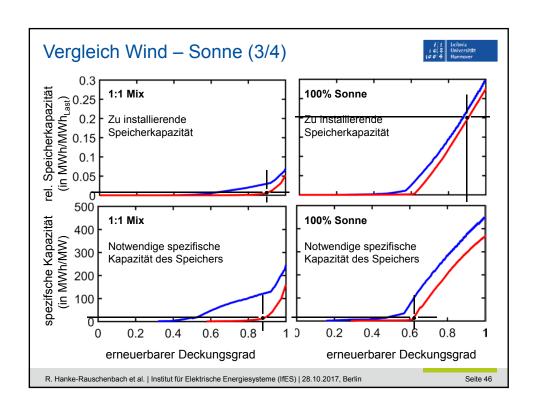

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

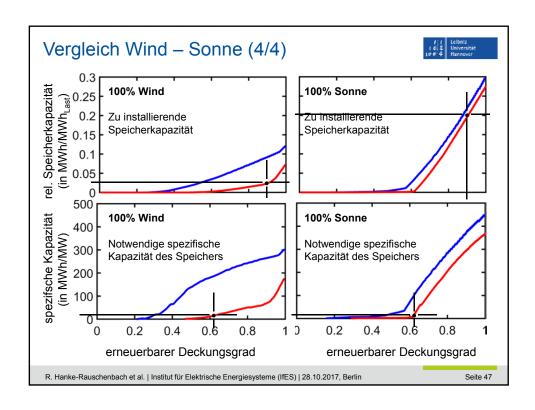

Seite 39

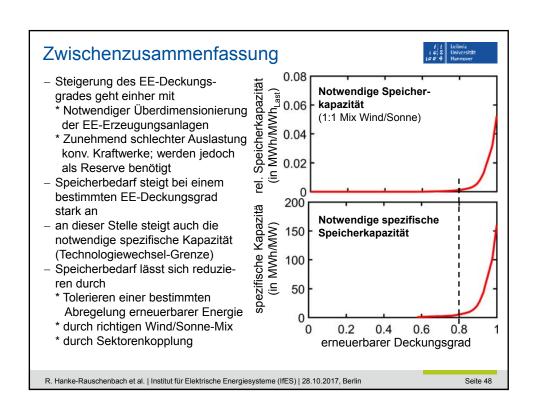


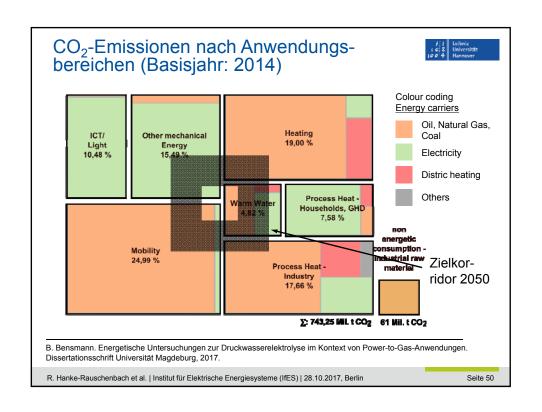

Was ist eigentlich mit den konventionellen Kraftwerken?


R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin





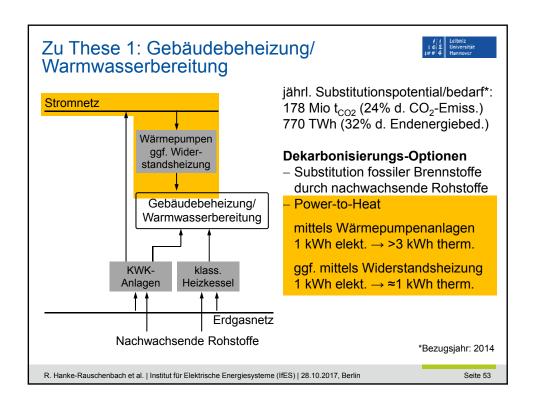


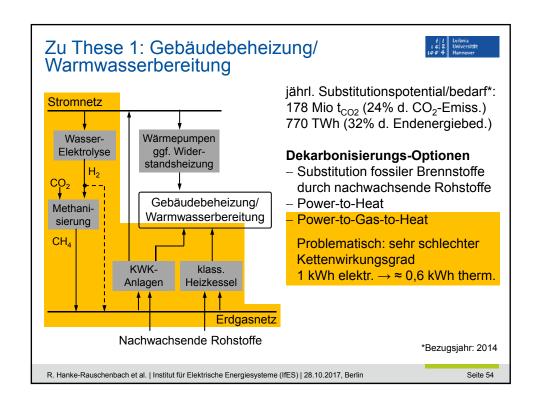


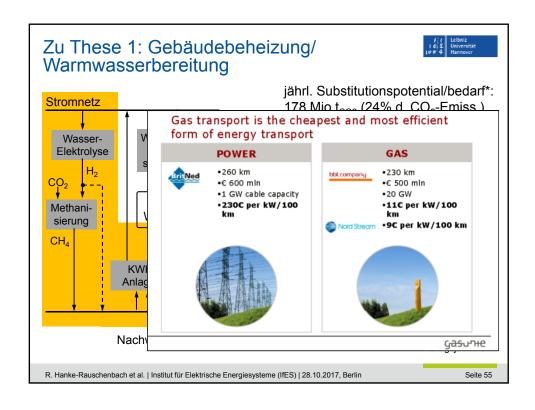
Gliederung

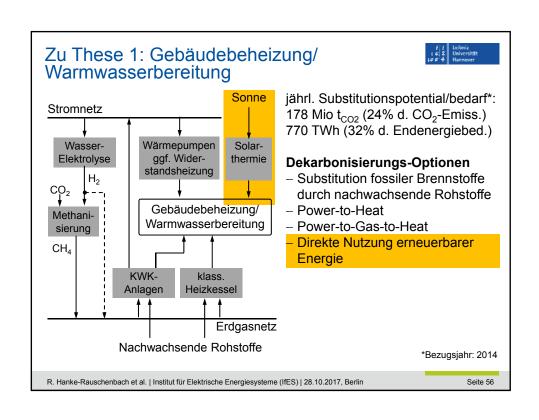
- 1. Welche Stromspeichertechnologien gibt es und auf welche Kenngrößen kommt es an?
- 2. Welche Speichertechnologien und welche Speicherkapazitäten brauchen wir für die Energiewende?
- Ausblick: Sektorenkopplung Speicherbedarfe reduzieren und Gesamtsystem dekarbonisieren

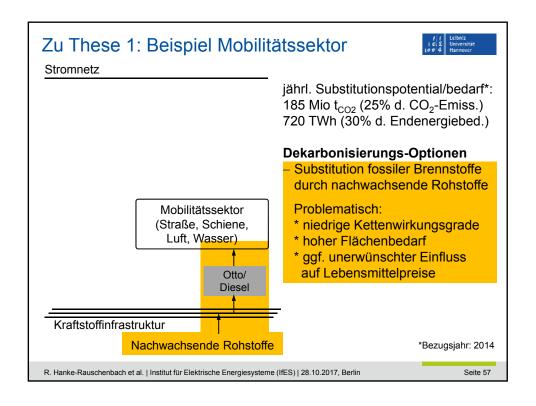
R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

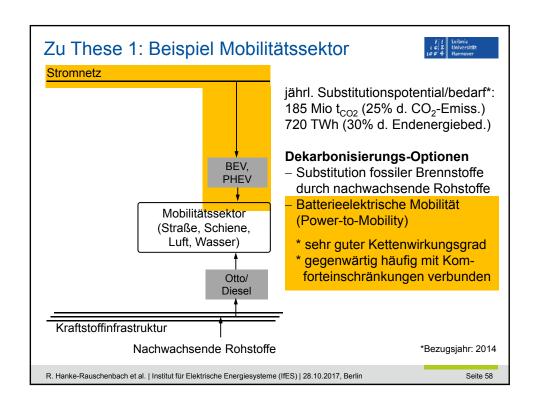

Vier (technische) Thesen zur Sektorkopplung

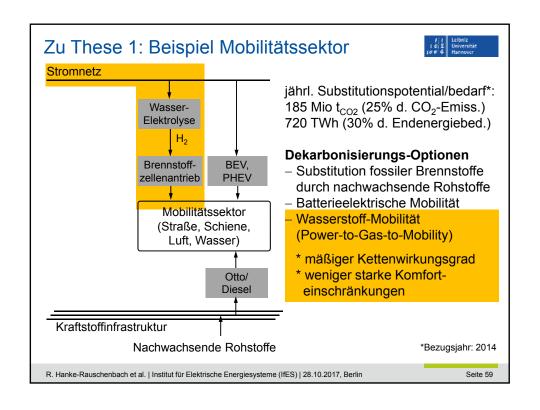


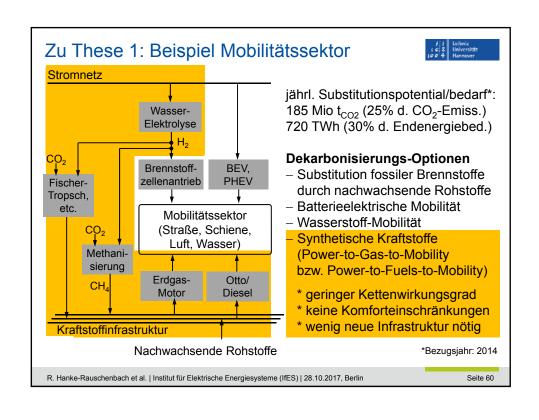

- 1. Die Sektorkopplung stellt ein wichtiges Lösungselement im Kontext der Wärme-/Verkehrswende dar.
- 2. Die Umsetzung der Sektorkopplung erfordert einen gleichzeitigen (!) Zubau erneuerbarer Energien. Missachtung dieses Grundsatzes führt gegenwärtig zu einer Erhöhung der CO₂-Emissionen.
- 3. Die Sektorkopplung bietet unter bestimmten Voraussetzungen Flexibilitäten für den Betrieb des Stromsystems und hilft damit Speicherbedarfe zu senken.
- 4. Der Zubau Erneuerbarer zur Verwendung in der Sektorkopplung kommt unter bestimmten Voraussetzungen ohne Netzausbau aus.

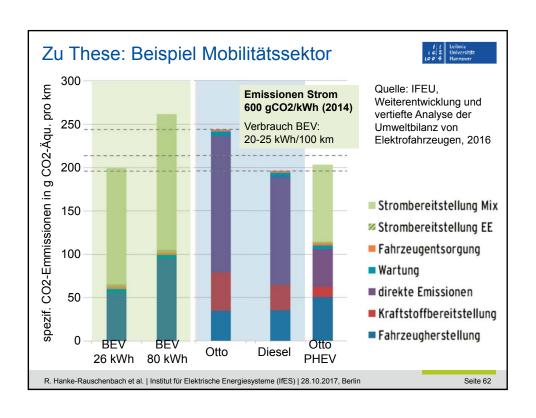

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

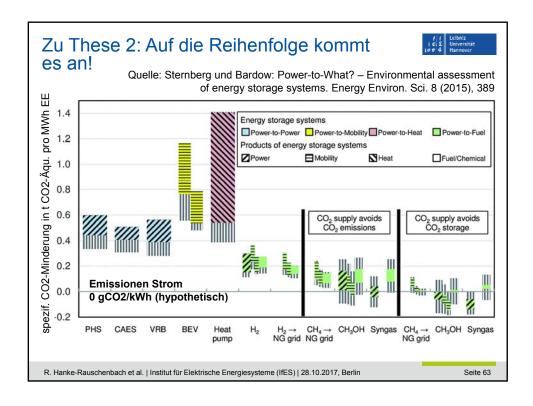

Zu These 1: Gebäudebeheizung/ 1 1 Leibniz 10 2 Universität 100 4 Hannover Warmwasserbereitung jährl. Substitutionspotential/bedarf*: Stromnetz 178 Mio t_{CO2} (24% d. CO₂-Emiss.) 770 TWh (32% d. Endenergiebed.) **Dekarbonisierungs-Optionen** Substitution fossiler Brennstoffe durch nachwachsende Rohstoffe Gebäudebeheizung/ Problematisch: Warmwasserbereitung * niedrige Kettenwirkungsgrade * hoher Flächenbedarf * ggf. unerwünschter Einfluss KWKklass. auf Lebensmittelmärkte Heizkessel Anlagen **Erdga**snetz Nachwachsende Rohstoffe *Bezugsjahr: 2014 Seite 52 R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin





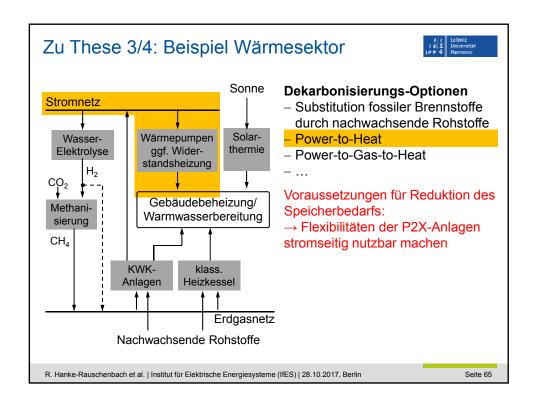


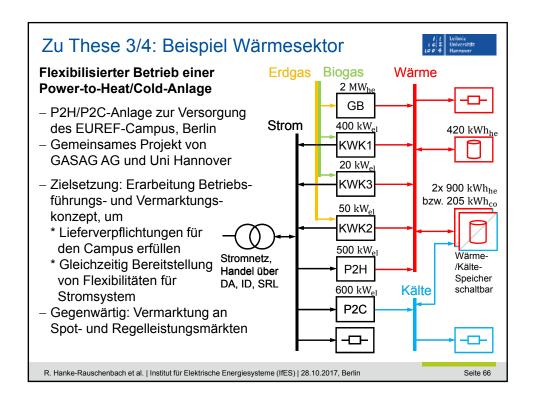


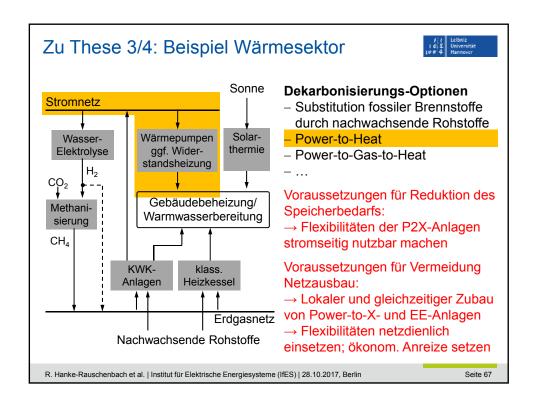

Vier (technische) Thesen zur Sektorkopplung

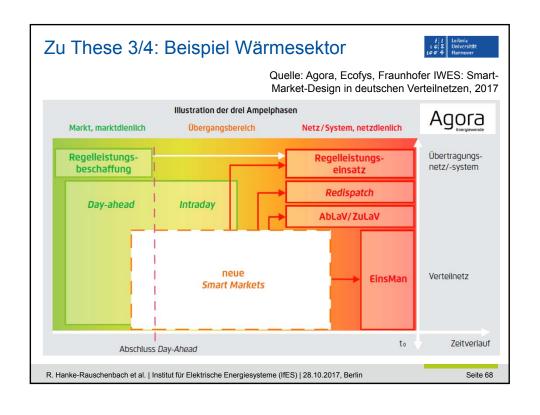
- 1. Die Sektorkopplung stellt ein wichtiges Lösungselement im Kontext der Wärme-/Verkehrswende dar.
- 2. Die Umsetzung der Sektorkopplung erfordert einen gleichzeitigen (!) Zubau erneuerbarer Energien. Missachtung dieses Grundsatzes führt gegenwärtig zu einer Erhöhung der CO₂-Emissionen.
- 3. Die Sektorkopplung bietet unter bestimmten Voraussetzungen Flexibilitäten für den Betrieb des Stromsystems und hilft damit Speicherbedarfe zu senken.
- 4. Der Zubau Erneuerbarer zur Verwendung in der Sektorkopplung kommt unter bestimmten Voraussetzungen ohne Netzausbau aus.

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin




Vier (technische) Thesen zur Sektorkopplung




- 1. Die Sektorkopplung stellt ein wichtiges Lösungselement im Kontext der Wärme-/Verkehrswende dar.
- 2. Die Umsetzung der Sektorkopplung erfordert einen gleichzeitigen (!) Zubau erneuerbarer Energien. Missachtung dieses Grundsatzes führt gegenwärtig zu einer Erhöhung der CO₂-Emissionen.
- 3. Die Sektorkopplung bietet unter bestimmten Voraussetzungen Flexibilitäten für den Betrieb des Stromsystems und hilft damit Speicherbedarfe zu senken.
- 4. Der Zubau Erneuerbarer zur Verwendung in der Sektorkopplung kommt unter bestimmten Voraussetzungen ohne Netzausbau aus.

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Möglichkeiten zur Speicherung wei elektrischenergie und Speicherbedarfe – In aller Kürze Richard Hanke-Rauschenhach, Astrid Bensmann & Boris Bensmann

Energiesysteme (IfES) sche Energiespeichersysteme

Forschungszentrum Energie 2050 (LiFE 2050)

Sitzung der BAG-Energie, Bündnis 90/Die Grünen, 28.10.2017, Berlin

Kontakt/Rückfragen

Leibniz Universität Hannover Institut für Elektrische Energiesysteme (IfES) Fachgebiet Elektrische Energiespeichersysteme

- Prof. Dr.-Ing. Richard Hanke-Rauschenbach Institutsleiter hanke-rauschenbach@ifes.uni-hannover.de
- Dr.-Ing. Astrid Bensmann Gruppenleiterin Speichersystemtechnik astrid.bensmann@ifes.uni-hannover.de
- Dr.-Ing. Boris Bensmann Gruppenleiter Wasserelektrolyse boris.bensmann@ifes.uni-hannover.de

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Beteiligen Sie sich am Diskurs zur Sektorkopplung!

- 7./8. November 2017, Hannover
- Forum 1 "Dekarbonisierung des Gesamtsystems: Bedarfe, Beiträge der Sektorkopplung, alternative Routen"
- Forum 2 "Sektorkopplung aus Sicht des Stromnetzes – Freund oder Feind?"
- Forum 3 "Schlüsseltechnologien der Sektrokopplung"
- Forum 4 "Think Big! Wie viel Verantwortung trägt der Bürger?"
- Plenarvorträge und Podiumsdiskussion mit Vertretern aus Industrie, Politik und Wissenschaft

Energie-Forschungszentrum
Niedersachsen

Zehnte Niedersächsische
Energietage
Think Big! Sektorkopplung visionär

7. bis 8. November 2017
im Alten Rathaus der Stadt Hannover

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Ergänzendes Material

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

	2015	2050
Spezifische Leistung, $\varepsilon = E/P$ Lade-/Entladewirkungsgrad, $\eta_{\rm lad} \cdot \eta_{\rm entl}$ Ratenkonstante, Selbstentladung	1-10 kWh/kW 82-86% 2,7-10,8%/m	1-10 kWh/kW 85-93% 1,2-4,8%/m
kalendarische Lebensdauer Zyklenlebensdauer (Vollzyklen)	9-12 Jahre 2.500	10-20 Jahre 2.500
Investitionskosten mit Kapazität skalierender Teil mit Leistung skalierender Teil laufende Kosten bezogen auf Investkost.	75-198 €/kWh (167-646 €/kWh) ^b 55-90 €/kW 0,5-1,5%/a	75-165 €/kWh (161-535 €/kWh) ^b 30-60 €/kW 0,5-1,5%/a
Kapazitäts-/Leistungsuntergrenze Potentialgrenze (BRD) kritische Ressourcen spez. Flächenbedarf	keine keine Blei 8.000-12.000 k ca. 35 m²/MWh°	g/MWh
^a falls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa ^b gilt für kleinskalige Systeme (Heimanlagen) ^c grobe Abschätzung; angenommene Gebäudehöhe 2,5 m	auer (2015)	
R. Hanke-Rauschenbach et al. Institut für Elektrische Energiesysteme	(IfES) 28.10.2017, Berlin	Seite 73

	2015	2050
Spezifische Leistung, $\varepsilon=E/P$ Lade-/Entladewirkungsgrad, $\eta_{\mathrm{lad}}\cdot\eta_{\mathrm{entl}}$ Ratenkonstante, Selbstentladung	1-10 kWh/kW 77-82% 1,5%/m ^b	1-10 kWh/kW 83-91% 1,5%/m ^b
kalendarische Lebensdauer Zyklenlebensdauer (Vollzyklen)	19-25 Jahre ^c 10.000 ^c	21-43 Jahre ^c 10.000 ^c
Investitionskosten mit Kapazität skalierender Teil mit Leistung skalierender Teil laufende Kosten bezogen auf Investkost.	240-348 €/kWh 140-180 €/kW 0,5-1,5%/a	53-165 €/kWh 30-60 €/kW 0,5-1,5%/a
Kapazitäts-/Leistungsuntergrenze Potentialgrenze (BRD) kritische Ressourcen spez. Flächenbedarf	mind. 100 kWh keine keine ca. 30 m²/MWh ^d	
efalls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa PWert kritisch ist zu hinterfragen; wahrscheinlich Standby-Verluste PWert ist kritisch zu hinterfragen; Pape et al. (2014) geht von wese dgrobe Abschätzung; angenommene Gebäudehöhe 2,5 m	durch Beheizung nicht berücks	

	2015	2050
Spezifische Leistung, $\varepsilon=E/P$ Lade-/Entladewirkungsgrad, $\eta_{\mathrm{lad}}\cdot\eta_{\mathrm{entl}}$ Ratenkonstante, Selbstentladung	flexibel 63-71% 3-11%/m	65-82% 1-5%/m
kalendarische Lebensdauer Zyklenlebensdauer (Vollzyklen)	11-15 Jahre 10.000-13.000	15-29 Jahre 13.000
Investitionskosten mit Kapazität skalierender Teil mit Leistung skalierender Teil laufende Kosten bezogen auf Investkost.	280-360 €/kWh 1.264-1.656 €/kW 1-2%/a	70-130 €/kWh 564-1.182 €/kW 1-2%/a
Kapazitäts-/Leistungsuntergrenze Potentialgrenze (BRD) kritische Ressourcen spez. Flächenbedarf	keine keine keine ca. 40 m²/MWh ^b ca. 75 m²/MW ^b	
^e falls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa ^e grobe Abschätzung; angenommene Gebäudehöhe 2,5 m	auer (2015)	

	2015	2050
Spezifische Leistung, $\varepsilon = E/P$ Lade-/Entladewirkungsgrad, $\eta_{lad} \cdot \eta_{entl}$	flexibel 63-70%	65-75%
Ratenkonstante, Selbstentladung	15-30%/m	15-30%/m
kalendarische Lebensdauer	25 Jahre	40 Jahre
Zyklenlebensdauer (Vollzyklen)	100.000	100.000
Investitionskosten mit Kapazität skalierender Teil mit Leistung skalierender Teil	30-38 €/kWh ^b 785-1.055 €/kW	19-28 €/kWh ^b 555-760 €/kW
laufende Kosten bezogen auf Investkost.	0,5-1%/a	0,5-1%/a
Kapazitäts-/Leistungsuntergrenze Potentialgrenze (BRD)	mind. 1 GWh ^c 24 GWh ^d	
kritische Ressourcen	keine	
spez. Flächenbedarf	ca. 10 m ² /MWh ^e	
efalls nicht anderweitig angegeben, Kenndaten nach Elsner und Sa "Abschätzung; Mindestvolumen (geom.) Kaverne: 0,3 Mio m³ (Fich "Wert ist kritisch zu hinterfragen; Fichtner (2014) weist allein in No egrobe Abschätzung; unterstellte Kaverne: 1 GWh, 100x100 m² ob	ntner, 2014), spez. Energie Druc rddeutschland geeignete Strukt	

Einflussgrößen für den Speicherbedarf

Ausgleichsbedarfe in einem Ener- Lösungsmöglichkeiten: gieversorgungssystem auf Basis von erneuerbaren Energien (EE)

- 1. Unterschiede im regenerativen Dargebot im Tag/Nacht-Verlauf
- 2. Unterschiede im regenerativen Dargebot im Verlauf der Jahreszeiten
- 3. Überbrückung von Dargebotsausfällen über mehrere Tage bei ungünstigen Wetterlagen (sog. Dunkelflaute)
- 4. geographische Ungleichverteilung von Erzeugungsgebieten und Lastzentren

- geeigneter EE-Mix
- Verzicht auf Ausgleich

d.h. Verwerfen von regenerativen Überschüssen bzw. Ergänzen von Fehlbeträgen aus fossilen Quellen

zu beachten:

- o nicht möglich in System mit 100% regenerativem Deckungsgrad
- große Erzeugungs(über)kapazitäten notwending in Systeme mit hohem regenerativen Deckungsgrad

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Einflussgrößen für den Speicherbedarf

Ausgleichsbedarfe in einem Energieversorgungssystem auf Basis von erneuerbaren Energien (EE)

- 1. Unterschiede im regenerativen Dargebot im Tag/Nacht-Verlauf
- 2. Unterschiede im regenerativen Dargebot im Verlauf der Jahres-
- 3. Überbrückung von Dargebotsausfällen über mehrere Tage bei ungünstigen Wetterlagen (sog. Dunkelflaute)
- 4. geographische Ungleichverteilung von Erzeugungsgebieten und Lastzentren

Lösungsmöglichkeiten:

- geeigneter EE-Mix
- Verzicht auf Ausgleich
- Laststeuerung (sog. Demand-Side-Management)
 - d.h. Betrieb verschiebbarer Lasten in Abhängigkeit vom reg. Dargebot (große Bedeutung im Kontext der Sektorenkopplung)

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Einflussgrößen für den Speicherbedarf

Ausgleichsbedarfe in einem Ener- Lösungsmöglichkeiten: gieversorgungssystem auf Basis von erneuerbaren Energien (EE)

- 1. Unterschiede im regenerativen Dargebot im Tag/Nacht-Verlauf
- 2. Unterschiede im regenerativen Dargebot im Verlauf der Jahreszeiten
- 3. Überbrückung von Dargebotsausfällen über mehrere Tage bei ungünstigen Wetterlagen (sog. Dunkelflaute)
- 4. geographische Ungleichverteilung von Erzeugungsgebieten und Lastzentren

- geeigneter EE-Mix
- Verzicht auf Ausgleich
- Laststeuerung (sog. Demand-Side-Management)

d.h. Betrieb verschiebbarer Lasten in Abhängigkeit vom reg. Dargebot (große Bedeutung im Kontext der Sektorenkopplung)

zu beachten:

- o erfordert Bereitschaft der Nutzer bzw. Zahlung von Flexibilitätsprämien nötig
- o erfordert entsprechende Steuerinfrastruktur
- o insb. Tag/Nacht-Ausgleich

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Einflussgrößen für den Speicherbedarf

Ausgleichsbedarfe in einem Energieversorgungssystem auf Basis von erneuerbaren Energien (EE)

- 1. Unterschiede im regenerativen Dargebot im Tag/Nacht-Verlauf
- 2. Unterschiede im regenerativen Dargebot im Verlauf der Jahres-
- 3. Überbrückung von Dargebotsausfällen über mehrere Tage bei ungünstigen Wetterlagen (sog. Dunkelflaute)
- 4. geographische Ungleichverteilung von Erzeugungsgebieten und Lastzentren

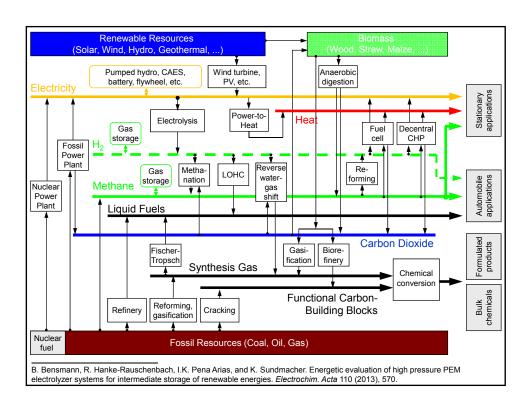
Lösungsmöglichkeiten:

- geeigneter EE-Mix
- Verzicht auf Ausgleich
- Laststeuerung (sog. Demand-Side-Management)
- Einsatz von Energiespeichern
 - d.h. Verschiebung von Energie aus dargebotsstarken in dargebotsschwache Zeiten

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

Einflussgrößen für den Speicherbedarf

Ausgleichsbedarfe in einem Energieversorgungssystem auf Basis von erneuerbaren Energien (EE)


- 1. Unterschiede im regenerativen Dargebot im Tag/Nacht-Verlauf
- Unterschiede im regenerativen Dargebot im Verlauf der Jahreszeiten
- Überbrückung von Dargebotsausfällen über mehrere Tage bei ungünstigen Wetterlagen (sog. Dunkelflaute)
- 4. geographische Ungleichverteilung von Erzeugungsgebieten und Lastzentren

Lösungsmöglichkeiten:

- soweit möglich: lastnahe Erzeugung
- Ausbau der Transportkapazitäten in den Verteil-/Übertragungsnetzen
- ggf. ergänzender Einsatz von Energiespeichern, um einzelne Komponenten/Netzabschnitte kleiner dimensionieren zu können

(läuft wieder auf Energieverschiebung aus dargebotsstarken in dargebotsschwache Zeiten hinaus, zumeist im Tag/Nacht-Verlauf)

R. Hanke-Rauschenbach et al. | Institut für Elektrische Energiesysteme (IfES) | 28.10.2017, Berlin

