

COMPARATIVE ANALYSIS OF INFRASTRUCTURES // Hydrogen Fuelling and Electric Charging of Vehicles

Study for H2 MOBILITY by Forschungszentrum Jülich (preliminary results, final study to be released end of October)

Prof. Stolten, Robinius & Team // Institute of Energy and Climate Research Electrochemical Process Engineering (IEK-3), Department of process and systems analysis, Germany presented first at EVS Stuttgart

All graphs and numbers are from the study "Comparative analysis of infrastructures: ..." if not quoted otherwise.

Nikolas Iwan | H2 MOBILITY | 10 October 2017

WHAT IS THE INVESTMENT REQUIRED TO FUEL OR CHARGE 20 MILLION EV'S?

We want to provide a solid foundation on which to discuss the cost of infrastructure!

- Is the infrastructure for FCEVs expensive?
- What about BEVs?

Con Linuida

Available literature does not give us the answers we need!

- Comprehensive analysis of 79 existing studies with focus on Germany
- Assumptions behind the studies are mostly not provided or transparent
- General tendency: H2 infrastructure is seen to be expensive, no results for higher numbers of BEV so far

THE STUDY WAS CONDUCTED BY FZ JÜLICH ON BEHALF OF H2 MOBILITY

- Our mission: the customer friendly hydrogen infrastructure in Germany
- We plan, build and operate H₂ refuelling stations
- Currently 25 people

- Institute of Energy and Climate Research / Electrochemical Process Engineering (IEK-3)
- Team: Martin Robinius, Thomas Grube, Patrick Kuckertz, Jochen Linßen, Markus Reuß, Peter Stenzel and Detlef Stolten

THE FUTURE OF OUR ENERGY SYSTEM WILL BE SUNNY AND WINDY!

Working assumptions about the energy of the future

- The electrification of the energy system in Germany and the growth in renewable energy is an irreversible trend for decades to come.
- It will lead to at least 80% "green" electricity.
- The renewable electricity generation will be dominated by wind and solar.

The electricity supply will become increasingly volatile!

H, MOBILITY

IÜLICH

AT 80% RENEWABLE ELECTRICITY THERE WILL BE A SIGNIFICANT **RESIDUAL ENERGY OF AROUND 270 TWH ...**

Electricity surplus set to increase

- High residual energy generation thanks mainly to onshore (N-E) and offshore (N-W) wind
- At 80% green electricity, annual surplus can reach 270 TWh
- Note: 90 TWh will be enough to power half of the fleet in Germany with H2 (or 20 million FCEV)

Residual energy MWh/km2

Neg. residual energy (Surplus) -3,000,000 to -2,500 2,500 to -1,700 -1,700 to -1,200 -1.200 to -830 -830 to -460 -460 to -120 -120 to 175 175 to 545 545 to 1,535 1,535 to 50,600

Source: Robinius, 2015

H₂MOBILITY

... AND EVEN THE PERFECT GRID WON'T HELP

The grid will not solve the problem!

- Even a perfect grid will reduce surplus by only 50 TWh – from 270 to 220 TWh
- The wind doesn't (always) blow and the sun doesn't (always) shine when demand requires it

Curtailment of renewable energy

THE COMPONENTS OF INFRASTRUCTURE FOR EV'S USED IN THE MODEL

H₂ production via electrolysis with storage in underground caverns

Distribution grid (cables, transformers, etc.)

Transport by trailer with tubes storing GH₂

Home or (slow) street charger, 3.7 – 22 kW depending on scenario

Transport via pipeline GH_2 grid

Fast charger, 150 – 350 kW

Sale of hydrogen at HRS (hydrogen refuelling stations)

ONE THIRD OF THE TOTAL INVESTMENT FOR 20 MILLION BEV'S GOES TO DISTRIBUTION GRID EXPANSION

THE INVESTMENT IN ASSETS TO USE SURPLUS ELECTRICITY FOR GREEN HYDROGEN PRODUCTION DRIVES THE INVESTMENT OVERALL

H₂ MOBILITY

FIRST DOMINATED BY HOME CHARGING, WITH INCREASING NUMBERS OF CARS MOST INVESTMENT GOES TO GRID EXPANSION AND FAST CHARGERS

Transformer; the number in km is the necessary length of cable for expanding the distribution grid

10

H₂ MOBILITY WASSERSTOFF TANKEN

FIRST DOMINATED BY REFUELLING INFRASTRACTURE, AT 3 MIO FCEV'S AND BEYOND THE INVESTMENT IS DRIVEN BY PRODUCTION AND STORAGE

IN THE LONG RUN THE INVESTMENT IN CHARGING INFRASTRUCTURE WILL BE 11 BILLION € HIGHER

THE COST FOR REFUELLING STATIONS IS LOWER THAN FOR CHARGERS – ALREADY ABOVE 100.000 VEHICLES

THE INVESTMENT IN PRODUCTION AND STORAGE OF 100% GREEN HYDROGEN DRIVES THE INVESTMENT IN THE H2 INFRASTRCUTRE AT 3 MIO VEHICLES

€ billion

3 - 10 million EVs

Investment in 100% green hydrogen production from surplus electricity and storage. Relatively high investment due to low level of utilisation of assets.

... FOR HIGHER NUMBERS OF VEHICLES THE COST FOR THE H2 INFRASTRUCTURE IS LOWER DUE TO **ECONOMIES OF SCALE**

15+ million EVs

Higher scale is beneficial for the H2 assets. BEV infrastructure requires increasing investment in distribution grid.

THE SPEED OF THE REFUELLING PROCESS DRIVES THE ECONOMIES OF SCALE FOR HYDROGEN

The ultra-fast refuelling process drives the efficient use of the asset:

- Time efficiency: more efficient use of production and refuelling assets
- Economics: greater turnover per time unit

H₂ MOBILITY

IÜLICH

COMPARED WITH OTHER INFRASTRUCTURE PROJECTS, THE INVEST IN BOTH THE FCEV- AND THE BEV INFRASTRUCTURE SEEMS NOT EXTRAORDINARY

Scenario renewable electricity capacity 2050

> Electric grid enhancement (NEP)

Federal transport infrastructure plan 2030

20 million FCEV infrastructure

20 million BEV infrastructure

Invest calculation ren. electricity generation: wind onshore: 171 GW / 1,000 €/kW // wind offshore: 59 GW / 2,500 €/kW // PV: 55 GW / 1,000 €/kW

- With a major share of RE from wind and solar, even the perfect grid doesn't help to avoid surplus.
 H₂ will be required to store energy to balance volatile electricity production and demand. At 80%
 RE one third of the surplus electricity allows powering 50% of the German fleet with H₂.
- The refuelling infrastructure for FCEVs is very (time) efficient. The more vehicles, the better the economies of scale work in favour of the hydrogen infrastructure.
- At 100.000 vehicles the cost for both infrastructures is about the same. At 1 mill. EVs the investment for hydrogen refuelling stations is lower than that for the charging points.
- Investment in green H₂ production and storage drives the cost for the H₂ infrastructure temporarily above the investment for BEVs. For higher numbers of vehicles the increase of additional investments in infrastructure is steeper for BEVs than for FCEVs.
- The investment in an infrastructure for producing and storing 100% green H₂ to refuel 20 mill. FCEVs is around 11 bn € lower than the investment required for charging 20 mill. BEVs.

THERE ARE SOME OPEN QUESTIONS WHICH NEED FURTHER INVESTIGATION

Open questions on the FCEV side

- How much of the existing natural gas pipeline grid can be used for H2?
 What is the cost of the upgrade?
- Legal action is required to make electrolysis economically feasible.

Open questions on the BEV side

- The NEP (grid expansion plan) assumes 6 mill. BEVs. We have assumed the transmission grid will cope with 20 mill.
- Investment in the distribution grid is the main factor pushing up costs – our cost assumptions need to be verified.

MY PERSONAL BELIEF

The Energy transition challenge (= to organise emission-free transport) is huge. For real emissionfree driving there are only two solutions: **BEV, FCEV**

We certainly need both technologies. They will be complementary.

Nikolas Iwan iwan@h2-mobility.de

In preparation

Link	Name	Торіс	Publications
Stolten	Stolten et al.	Comparative analysis of infrastrctures: Hydrogen Fuelling and Electric Charging of Vehicles	
Syrandis	Kostantinos Syrandis	Pan-European electrical power flow simulations investigating the potential for Power-to-X applications	Control Techniques and the Modeling of Electrical Power Flow across Transmission Networks. Renewable & Sustainable Energy Reviews, under review
Tietze	Vanessa Tietze	Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr	Tietze, V. & Stolten, D. 2015. Comparison of hydrogen and methane storage by means of a thermodynamic analysis. International Journal of Hydrogen Energy 40(35), 11530 - 11537
Reuß	Markus Reuß	Techno-ökonomische Analyse alternativer Wasserstoffinfrastruktur	Reuß, M., et al. (2017). " Seasonal storage and alternative carriers: A flexible hydrogen supply chain model." Applied Energy 200 (2017) 290–302

Published

Robinius, 2015	Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff	